Home
Class 12
MATHS
Evaluate : sum(k=1)^n (2^k+3^(k-1))...

Evaluate : `sum_(k=1)^n (2^k+3^(k-1))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sum_(k=1)^(11)(2+3^k)

Evaluate sum_(k=0)^(5)k^(2)

Find the value off sum_(k=1)^10(2+3^k)

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

The sequence a_(1), a_(2), a_(3), ..... a_(98) satisfies the relation a_(n + 1) = a_(n) +1" for " n = 1, 2, 3,..... 97 and has the sum equal to 4949. Evaluate sum_(k=1)^(49) a_(2k)

Value of sum_(k=1)^oosum_(r=0)^k1/(3^k)(k C_r) is 2/3 b. 4/3 c. 2 d. 1

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals