Home
Class 12
MATHS
If z1, z2, z3 are distinct nonzero compl...

If `z_1, z_2, z_3` are distinct nonzero complex numbers and `a ,b , c in R^+` such that `a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|)` Then find the value of `(a^2)/(|z_1-z_2|)+(b^2)/(|z_2-z_3|)+(c^2)/(|z_3-z_1|)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1, z_2, z_3 are distinct nonzero complex numbers and a ,b , c in R^+ such that a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|) Then find the value of (a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)

If z_1, z_2, z_3 are 3 distinct complex numbers such that 3/|z_2-z_3|-4/|z_3-z_1|=5/|z_1-z_2| then the value of 9/(z_2-z_3)+16/(z_3-z_1)+25/(z_1-z_2) equals

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

Let z_1, z_2,z_3 be three distinct complex numbers satisfying |z_1- 1|=|z_2 - 1|= |z_3-1| .If z_1+z_2+z_3=3 then z_1,z_2,z_3 must represent the vertices of

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .