Home
Class 12
MATHS
Which of the following is (are) correct?...

Which of the following is (are) correct? (A) `bar(z_1-z_2)-a(barz_1-barz_2)=0` (B) `bar(z_1-z_2)+a(barz_1-barz_2)=0` (C) `bar(z_1-z_2)+a(barz_1-barz_2)=-b` (D) `bar(z_1-z_2)+a(barz_1-barz_2)=-b`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is (are) correct? (A) barz_1+abarz_2=2b (B) barz_1+abarz_2=b (C) barz_1+abarz_2=-b (D) barz_1+abarz_2=-2b

(1) Re((z1z2)/(barz1))

Let z_1=2-i ,z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

Let z_1=2-i ,""""z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

For any complex numbers z_1,z_2 and z_3, z_3 Im(bar(z_2)z_3) +z_2Im(bar(z_3)z_1) + z_1 Im(bar(z_1)z_2) is

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

Prove that |(z_1- z_2)/(1-barz_1z_2)|lt1 if |z_1|lt1,|z_2|lt1

For two unimobular complex numbers z_(1) and z_(2) , find [(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

If z_(1),z_(2) are tow complex numberes (z_(1) ne z_(2)) satisfying |z_(1)^(2)- z_(2)^(2)|=|barz_(1)^(2)+barz_(2)^(2) - 2barz_(1)barz_(2)| , then