Home
Class 12
MATHS
zo is one of the roots of the equation z...

zo is one of the roots of the equation `z^n cos theta_0+ z^(n-1) cos theta_2 +. . . . . . + z cos theta_(n-1) + cos theta_(n) = 2`, where `theta in R` , then
(A) `|z_0| lt 1/2`
(B) `|z_0| gt 1/2`
(C) `|z_0| = 1/2`
(D)None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

If z_1 is a root of the equation a_0z^n+a_1z^(n-1)+........+ (a_(n-1)) z + a_n=3, where |a_i| lt 2 for i=0,1,.....n, then (a). |z|=3/2 (b). |z| lt 1/4 (c). |z| gt 1/4 (d). |z| > 1/3

The general solution of the equation, 2cot.(theta)/(2)=(1+cot theta)^(2) is (n in Z)

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

Using induction, prove that cos theta · cos 2theta · cos 2^2 theta. ... cos 2^(n-1) theta =(sin2^n theta)/(2^n sin theta)

Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt theta lt 180^(@)

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)