Home
Class 12
MATHS
Show that for any two non zero complex n...

Show that for any two non zero complex numbers `z_1,z_2 ` `(|z_1|+|z_2|)|z_1\|z_1|+z_2\|z_2||le2|z_1+z_2|`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two complex number z_1a n d\ z_2 prove that: |z_1+z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|lt=|z_1|+|z_2|

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2=|\z_1|^2+|\z_2|^2+2Re bar z_1 z_2

For any two complex numbers z_1 and z_2 , we have |z_1+z_2|^2=|z_1|^2+|z_2|^2 , then

For any two complex numbers z_1 and z_2 , we have |z_1+z_2|^2=|z_1|^2+|z_2|^2 , then

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

For any two complex numbers z_1 and z_2 , , prove that Re (z_1 z_2) = Re z_1 Re z_2 – Imz_1 Imz_2

Which of the following is correct for any tow complex numbers z_1a n dz_2? (a) |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|