Home
Class 12
MATHS
If alpha, beta, gamma, delta be the real...

If `alpha, beta, gamma, delta` be the real of the equation `x^4+4x^3-6x^2+7x-9=0` show that `(1+alpha^2)(1+beta^2)` `(1+gamma^2)(1+delta^2)` equal to 13.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma,sigma are the roots of the equation x^4+4x^3-6x^2+7x-9=0, then the value of (1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2) is a. 9 b. 11 c. 13 d. 5

If alpha, beta , gamma, delta are the roots of the equation x^4+x^2+1=0 then the equation whose roots are alpha^2, beta^2, gamma^2, delta^2 is

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta, gamma, delta are the roots of the equation x^(4)+Ax^(3)+Bx^(2)+Cx+D=0 such that alpha beta= gamma delta=k and A,B,C,D are the roots of x^(4)-2x^(3)+4x^(2)+6x-21=0 such that A+B=0 The value of (alpha+beta)(gamma+delta) is terms of B and k is

Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the roots of the equation x^4-x^3-x^2-1=0 then P(alpha)+P(beta)+P(gamma)+P(delta)=

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha, beta and gamma are three ral roots of the equatin x ^(3) -6x ^(2)+5x-1 =0, then the value of alpha ^(4) + beta ^(4) + gamma ^(4) is: