Home
Class 12
MATHS
for any complex nuber z maximum value of...

for any complex nuber z maximum value of `|z|-|z-1|` is (A) 0 (B) `1/2` (C) 1 (D) `3/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

For any complex number z, maximum value of |z|-|z-1| is

For any complex number minimum value of |z| - |z-1| is (A) 1 (B) 2 (C) 1/2 (D) 1/3

For any complex number z , the minimum value of |z|+|z-1|

If z_1 and z_2 lies on |z|=9 and |z-3-4i|=4 respectively, find minimum possible value of |z_1 -z_2| (A) 0 (B) 5 (C) 13 (D) 2

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If the point representing the complex number z_alpha is a point on or inside the circle having centre (0+i0) and radius alpha then maximum value of |z_1+z_2+……+z_n|= (A) (n(n+3))/2 (B) (n(n+1))/2 (C) (n(n-1))/2 (D) none of these

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is

Which of the following is correct for any tow complex numbers z_1a n dz_2? |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|

Find the complex number z with maximum and minimum possible values of |z| satisfying (a) |z + (1)/(z) | =1 .

Which of the following is correct for any tow complex numbers z_1a n dz_2? (a) |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|