Home
Class 12
MATHS
The number of complex numbers z satisfy...

The number of complex numbers z satisfying `|z-3-i|= |z-9-i| and |z-3+3i| =` are

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of complex numbers z satisfying |z-3-i|=|z-9-i|a n d|z-3+3i|=3 are a. one b. two c. four d. none of these

The number of complex numbers z satisfying |z-3-i|=|z-9-i|a n d|z-3+3i|=3 are a. one b. two c. four d. none of these

Number of complex numbers satisfying z^3 = barz is

The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

Find the non-zero complex number z satisfying z =i z^2dot

The complex number z satisfying |z+bar z|+|z-bar z|=2 and |iz-1|+|z-i|= 2 is/are A) i B) -i C) 1/i D) 1/(i^3)

Find the non-zero complex numbers z satisfying barz =i z^2dot

Let Z be a complex number satisfying |Z-1| <= |Z-3|, |Z-3| <= |Z-5|, |Z+ i| <= |Z- i|, |Z- i| <= |Z- 5i| . Then area of region in which Z lies is A square units, Where A is equal to :

Let Z be a complex number satisfying |Z-1| <= |Z-3|, |Z-3| <= |Z-5|, |Z+ i| <= |Z- i|, |Z- i| <= |Z- 5i| . Then area of region in which Z lies is A square units, Where A is equal to :

Let Z_(1) and Z_(2) be two complex numbers satisfying |Z_(1)|=9 and |Z_(2)-3-4i|=4 . Then the minimum value of |Z_(1)-Z_(2)| is