Home
Class 12
MATHS
If |z^2-3|=3|z| , then the maximum value...

If `|z^2-3|=3|z|` , then the maximum value of `|z|` is `1` b. `(3+sqrt(21))/2` c. `(sqrt(21)-3)/2` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z^2-3|=3|z| , then the maximum value of |z| is a. 1 b. (3+sqrt(21))/2 c. (sqrt(21)-3)/2 d. none of these

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3)+""1 (2) sqrt(5)+""1 (3) 2 (4) 2""+sqrt(2)

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4/2z|=2 then the least of |z| is (A) sqrt(5)-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z| < sqrt(2)-1,t h e n|z^2+2zcosalpha|i s a. less than 1 b. sqrt(2)+1 c. sqrt(2)-1 d. none of these

for any complex nuber z maximum value of |z|-|z-1| is (A) 0 (B) 1/2 (C) 1 (D) 3/2