Home
Class 12
MATHS
Let P-=sqrt(3)e^(ipi/3), Q-=sqrt(3)e^(-p...

Let `P-=sqrt(3)e^(ipi/3), Q-=sqrt(3)e^(-pi/3) and R -=sqrt(3)e^(-ipi)`. If P,Q,R form a triangle PQR in the Argand plane, then `/_\ PQR` is (A) isosceles (B) equilateral (C) scalene (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle (1-(r_1)/(r_2))(1-(r_1)/(r_3))=2 then the triangle is right angled (b) isosceles equilateral (d) none of these

Let P(e^(itheta_1)), Q(e^(itheta_2)) and R(e^(itheta_3)) be the vertices of a triangle PQR in the Argand Plane. Theorthocenter of the triangle PQR is

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

If P=2+sqrt3 , Q=2-sqrt3 , then P/Q=?

If Delta P Q R\ ~= Delta E F D , then /_E= (a) /_P (b) /_Q (c) /_R (d) None of these

|(a+1, a+2, a+p), (a+2, a+3, a+q) ,(a+3, a+4, a+r)|=0 , then p, q r are in (A) A P (B) G P (C) H P (D) none of these

If the point (0,0),(2,2sqrt(3)), and (p,q) are the vertices of an equilateral triangle, then (p ,q) is

Let P = (-1, 0), Q = (0, 0) and R = (3, 3sqrt3 ) be three points. The equation of the bisector of the angle PQR

Show that the points P(7,3) , Q ( 6,3+ sqrt3) and R (5,3) from an equilateral triangles.

If P+Q=R and |P|=|Q|= sqrt(3) and |R| ==3 , then the angle between P and Q is