Home
Class 12
MATHS
If a=z1+z2+z3, b=z1+omega z2+omega^2z3,c...

If `a=z_1+z_2+z_3, b=z_1+omega z_2+omega^2z_3,c=z_1+omega^2z_2+omegaz_3(1,omega, omega^2` are cube roots of unity), then the value of `z_2` in terms of a,b, and c is (A) `(aomega^2+bomega+c)/3` (B) `(aomega^2+bomega^2+c)/3` (C) `(a+b+c)/3` (D) `(a+bomega^2+comega)/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|lt=2a n d|omegaz-1-omega^2|=a (where omega is a cube root of unity) , then complete set of values of a

If omega is a cube root of unity, then find the value of the following: (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)

If omega ne 1 is a cube root of unity and a+b=21 , a^(3)+b^(3)=105 , then the value of (aomega^(2)+bomega)(aomega+bomega^(2)) is be equal to

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If a,b,c are distinct integers and omega(ne 1) is a cube root of unity, then the minimum value of |a+bomega+comega^(2)|+|a+bomega^(2)+comega| is

If a^3+b^3+6a b c=8c^3 & omega is a cube root of unity then: (a) a , b , c are in A.P. (b) a , b , c , are in H.P. (c) a+bomega-2comega^2=0 (d) a+bomega^2-2comega=0

omega is an imaginary root of unity. Prove that If a+b+c = 0 then prove that (a + bomega + comega^(2))^(3)+(a+bomega^(2) + comega)^(3) = 27abc .

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (a+bomega+comega^2)^3+(a+bomega^2+comega)^3= 3abc (b) 6abc (c) 9 abc (d) 27 abc

If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (a+bomega+comega^2)^2+(a+bomega^2+comega)^3= 3abc (b) 6abc (c) 9 abc (d) 27 abc