Home
Class 12
MATHS
The points A(z1), B(z2) and C(z3) form a...

The points `A(z_1), B(z_2) and C(z_3)` form an isosceles triangle in the Argand plane right angled at B, then `(z_1-z_2)/(z_3-z_2)` can be (A) 1 (B) -1 (C) `-i` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If A(z_(1)),B(z_(2)), C(z_(3)) are the vertices of an equilateral triangle ABC, then arg (2z_(1)-z_(2)-z_(3))/(z_(3)_z_(2))=

If A(z_(1)),B(z_(2)) and C(z_(3)) are three points in the Argand plane such that z_(1)+omegaz_(2)+omega^(2)z_(3)=0 , then

Let A(z_(1)),B(z_(2)),C(z_(3)) be the vertices of an equilateral triangle ABC in the Argand plane, then the number (z_(2)-z_(3))/(2z_(1)-z_(2)-z_(3)) , is

If z_1 , z_2 ,z_3 are the vertices of an isosceles triangle right angled at z_2 , then prove that (z_1)^2+2(z_2)^2+(z_3)^2=2(z1+z3)z2

If z_(1), z_(2) and z_(3) are the vertices of a triangle in the argand plane such that |z_(1)-z_(2)|=|z_(1)-z_(3)| , then |arg((2z_(1)-z_(2)-z_(3))/(z_(3)-z_(2)))| is

If the points z_(1),z_(2),z_(3) are the vertices of an equilateral triangle in the Argand plane, then which one of the following is not correct?

The triangle with vertices at the point z_1z_2,(1-i)z_1+i z_2 is

If A (z_1), B (z_2) and C (z_3) are three points in the argand plane where |z_1 +z_2|=||z_1-z_2| and |(1-i)z_1+iz_3|=|z_1|+|z_3|-z_1| , where i = sqrt-1 then

, a point 'z' is equidistant from three distinct points z_(1),z_(2) and z_(3) in the Argand plane. If z,z_(1) and z_(2) are collinear, then arg (z(z_(3)-z_(1))/(z_(3)-z_(2))). Will be (z_(1),z_(2),z_(3)) are in anticlockwise sense).

If the complex number A(z_(1)),B(z_(2)) and origin forms an isosceles triangle such that angle(AOB) = (2pi)/3 ,then (z_(1)^(2)+z_(2)^(2) +4z_(1)z_(2))/(z_(1)z_(2)) equals ________