Home
Class 12
MATHS
The number of solutions of sqrt(2)|z-1|=...

The number of solutions of `sqrt(2)|z-1|=z-i,` where `z=x+iy` is (A) 0 (B) 1 (C) 2 (D) 3

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If z+sqrt(2)|z+1|+i=0 , then z= (A) 2+i (B) 2-i (C) -2-i (D) -2+i

If B: {z: |z-3-4i|}=5 and C={z:Re[(3+4i)z]=0} then the number of elements in the set B intesection C is (A) 0 (B) 1 (C) 2 (D) none of these

The number of solutions of z^3+ z =0 is (a) 2 (b) 3 (c) 4 (d) 5

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

Number of solutions of Re(z^(2))=0 and |Z|=a sqrt(2) , where z is a complex number and a gt 0 , is

The system of equation |z+1+i|=sqrt2 and |z|=3} , (where i=sqrt-1 ) has

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If sec^-1 ((z-2)/i) lies between 0 and pi/2 , where z=x+iy then (A) xgt2,ygt1 (B) x=2,ygt1 (C) x=2,y=1 (D) xlt2,y=1

The complex number z satisfying |z+bar z|+|z-bar z|=2 and |iz-1|+|z-i|= 2 is/are A) i B) -i C) 1/i D) 1/(i^3)

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a: