Home
Class 12
MATHS
If |(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4...

If `|(x^2+x, x-1, x+1), (x, 2x, 3x-1), (4x+1, x-2, x+2)|= px^4 +qx^3+rx^2+sx+t` be n identity in x and `omega` be an imaginary cube root of unity, `(a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)=` (A) `p` (B) `2p` (C) `-2p` (D) `-p`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega is a cube root of unity, then find the value of the following: (a+bomega+comega^2)/(c+aomega+bomega^2)+(a+bomega+comega^2)/(b+comega+aomega^2)

omega is an imaginary root of unity. Prove that (a+bomega+comega^2)^3+(a+bomega^2+comega^)^3 =(2a-b-c)(2b-a-c)(2c-a-b)dot

If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (a+bomega+comega^2)^2+(a+bomega^2+comega)^3= 3abc (b) 6abc (c) 9 abc (d) 27 abc

If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (a+bomega+comega^2)^3+(a+bomega^2+comega)^3= 3abc (b) 6abc (c) 9 abc (d) 27 abc

omega is an imaginary root of unity. Prove that If a+b+c = 0 then prove that (a + bomega + comega^(2))^(3)+(a+bomega^(2) + comega)^(3) = 27abc .

If a,b,c are distinct integers and omega(ne 1) is a cube root of unity, then the minimum value of |a+bomega+comega^(2)|+|a+bomega^(2)+comega| is

The polynomial x^6+4x^5+3x^4+2x^3+x+1 is divisible by_______ where omega is one of the imaginary cube roots of unity. (a) x+omega (b) x+omega^2 (c) (x+omega)(x+omega^2) (d) (x-omega)(x-omega^2)

If omega ne 1 is a cube root of unity and a+b=21 , a^(3)+b^(3)=105 , then the value of (aomega^(2)+bomega)(aomega+bomega^(2)) is be equal to

Let omega be the imaginary cube root of unity and (a+bomega + comega^2)^(2015) =(a+bomega^2 + c omega) where a,b,c are unequal real numbers . Then the value of a^2+b^2+c^2-ab-bc-ca equals.