Home
Class 12
MATHS
If z1,z2,z3,………..z(n-1) are the roots of...

If `z_1,z_2,z_3,………..z_(n-1)` are the roots of the equation `1+z+z^2+…….+z^(n-1)=0, where n epsilon N, ngt2` then (A) `z_1,z_2, …z_(n-1)` are terms of a G.P. (B) `z_1,z_2,……,z_(n-1)` are terms of an A.P. (C) `|z_1|=|z_2|=|z_3|=.|z_(n-1)|!=1` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

If z_(1),z_(2),z_(3),…,z_(n-1) are the roots of the equation z^(n-1)+z^(n-2)+z^(n-3)+…+z+1=0 , where n in N, n gt 2 and omega is the cube root of unity, then

If z_1,z_2,z_3 are any three roots of the equation z^6=(z+1)^6, then arg((z_1-z_3)/(z_2-z_3)) can be equal to

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If z_1,z_2,z_3 are non zero non collinear complex number such that 2/z_1=1/z_2+ 1/z_3, then (A) ponts z_1,z_2,z_3 form and equilateral triangle (B) points z_1,z_2,z_3 lies on a circle (C) z_1,z_2,z_3 and origin are concylic (D) z_1+z_2+z_3=0

If z_1a n dz_2 are complex numbers and u=sqrt(z_1z_2) , then prove that |z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to