Home
Class 12
MATHS
Let z1,z2,z3 be three distinct non zero ...

Let `z_1,z_2,z_3` be three distinct non zero complex numbers which form an equilateral triangle in the Argand pland. Then the complex number associated with the circumcentre of the tirangle is (A) `(z_1 z_2)/z_3` (B) `(z_1z_3)/z_2` (C) `(z_1+z_2)/z_3 (D) (z_1+z_2+z_3)/3 `

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B represent the complex numbers z_1 and z_2 such that |z_1-z_2|=|z_1+z_2| , then circumcentre of /_\AOB, O being the origin is (A) (z_1+2z_2)/3 (B) (z_1+z_2)/3 (C) (z_1+z_2)/2 (D) (z_1-z_2)/3

Let A(z_(1)),B(z_(2)),C(z_(3)) be the vertices of an equilateral triangle ABC in the Argand plane, then the number (z_(2)-z_(3))/(2z_(1)-z_(2)-z_(3)) , is

Let the complex numbers z_1,z_2 and z_3 be the vertices of an equilateral triangle let z_0 be the circumcentre of the triangle. Then prove that z_1^2+z_2^2+z_3^2= 3z_0^2

Let the complex numbers z_1,z_2 and z_3 be the vertices of a equilateral triangle. Let z_0 be the circumcentre of the tringel ,then z_1^2+z_2^2+z_3^2= (A) z_0^2 (B) 3z_0^2 (C) 9z_0^2 (D) 0

Let the complex numbers z_(1),z_(2) and z_(3) be the vertices of an equailateral triangle. If z_(0) is the circumcentre of the triangle , then prove that z_(1)^(2) + z_(2)^(2) + z_(3)^(2) = 3z_(0)^(2) .

lf z_1,z_2,z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and if z_1 = 1 + iotasqrt3 , then

Let z_1 and z_2 be two non - zero complex numbers such that z_1/z_2+z_2/z_1=1 then the origin and points represented by z_1 and z_2

If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then z_1^2+z_2^2+z_3^2 is equal to

If z_1,z_2,z_3 be the vertices A,B,C respectively of an equilateral trilangle on the Argand plane and |z_1|=|z_2|=|z_3| then (A) Centroid oif the triangle ABC is the complex number 0 (B) Distance between centroid and orthocentre of the triangle ABC is 0 (C) Centroid of the tirangle ABC divides the line segment joining circumcentre and orthcentre in the ratio 1:2 (D) Complex number representing the incentre of the triangle ABC is a non zero complex number

bb"statement-1" " Let " z_(1),z_(2) " and " z_(3) be htree complex numbers, such that abs(3z_(1)+1)=abs(3z_(2)+1)=abs(3z_(3)+1) " and " 1+z_(1)+z_(2)+z_(3)=0, " then " z_(1),z_(2),z_(3) will represent vertices of an equilateral triangle on the complex plane. bb"statement-2" z_(1),z_(2),z_(3) represent vertices of an triangle, if z_(1)^(2)+z_(2)^(2)+z_(3)^(2)+z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1)=0