Home
Class 12
MATHS
If z+sqrt(2)|z+1|+i=0, then z= (A) 2+i (...

If `z+sqrt(2)|z+1|+i=0`, then z= (A) `2+i` (B) `2-i` (C) `-2-i` (D) `-2+i`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of sqrt(2)|z-1|=z-i, where z=x+iy is (A) 0 (B) 1 (C) 2 (D) 3

If z=i log(2-sqrt3), then cosz= a. -1 b. (-1)/2 c. 1 d. 2

The reflection of the complex number (2-i)/(3+i) , (where i=sqrt(-1) in the straight line z(1+i)= bar z (i-1) is (-1-i)/2 (b) (-1+i)/2 (i(i+1))/2 (d) (-1)/(1+i)

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)

If B: {z: |z-3-4i|}=5 and C={z:Re[(3+4i)z]=0} then the number of elements in the set B intesection C is (A) 0 (B) 1 (C) 2 (D) none of these

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)

The complex number z satisfying |z+bar z|+|z-bar z|=2 and |iz-1|+|z-i|= 2 is/are A) i B) -i C) 1/i D) 1/(i^3)