Home
Class 12
MATHS
If |z-4+3i|le3, then the least value of ...

If `|z-4+3i|le3,` then the least value of `|z|=`
(A) 2
(B) 3
(C) 4
(D) 5

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|ge5 then the least value of |z+ 2/z| is (A) 23/5 (B) 24/5 (C) 5 (D) none of these

If |z-1|+|z+3|le8, then the maximum, value of |z-4| is =

If |z|+z=3+i , then value of |z| is (A) 5//3 (B) 3//5 (C) 4//3 (D) 3//4

If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

If |z-4/2z|=2 then the least of |z| is (A) sqrt(5)-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

|z +3| <= 3 , then the greatest and least value of |z | are

Least value of |z-2|+|z-4i| is

If |z-25i|le15 then least positive value of argz= (A) pi-tan^-1(3/4) (B) tan^-1(3/4) (C) tan^-1(4/3) (D) pi-tan^-1(4/3)

If z is any complex number satisfying |z - 3 - 2i | less than or equal 2, then the minimum value of |2z - 6 + 5i| is (1) 2 (2) 1 (3) 3 (4) 5