Home
Class 12
MATHS
If the vertices of an equilateral triang...

If the vertices of an equilateral triangle are situated at `z=0, z=z_1 and z=z_2` then which of the following is(are) true?
(A) `|z_1|=|z_2|`
(B) `|z_1+z_2|=|z_1|+|z_2|`
(C) `|z_1-z_2|=|z_1|`
(D) |argz_1-argz_2|= `pi/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

If z_1 and z_2 two non zero complex numbers such that |z_1+z_2|=|z_1| then which of the following may be true (A) argz_1-argz_2=0 (B) argz_1-argz_2=pi (C) |z_1-z_2|=||z_1|-|z_2|| (D) argz_1-argz_2=4pi

lf z_1,z_2,z_3 are vertices of an equilateral triangle inscribed in the circle |z| = 2 and if z_1 = 1 + iotasqrt3 , then

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

Let z_1,z_2,z_3 be three distinct non zero complex numbers which form an equilateral triangle in the Argand pland. Then the complex number associated with the circumcentre of the tirangle is (A) (z_1 z_2)/z_3 (B) (z_1z_3)/z_2 (C) (z_1+z_2)/z_3 (D) (z_1+z_2+z_3)/3

If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then z_1^2+z_2^2+z_3^2 is equal to

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1 + z_2| = |z_1| + |z_2| is possible if :