Home
Class 12
MATHS
If a and b are two real number lying bet...

If a and b are two real number lying between 0 and 1 such that `z_1=a+i, z_2=1+bi and z_3=0` form anequilateral trilangle , then (A) `a=2+sqrt(3)` (B) `b=4-sqrt(3)` (C) `a=b=2-sqrt(3)` (D) `a=2,b=sqrt(3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are two real number lying between 0 and 1 such that z_1=a+i, z_2=1+bi and z_3=0 form an equilateral triangle , then (A) a=2+sqrt(3) (B) b=4-sqrt(3) (C) a=b=2-sqrt(3) (D) a=2,b=sqrt(3)

a and b are real numbers between 0 and 1 such that the points Z_1 =a+ i , Z_2=1+ bi , Z_3= 0 form an equilateral triangle, then a and b are equal to

The rationalisation factor of sqrt(3) is (a) -sqrt(3) (b) 1/(sqrt(3)) (c) 2sqrt(3) (d) -2sqrt(3)

If |z-4/2z|=2 then the least of |z| is (A) sqrt(5)-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

In a Delta A B C ,if a=2,/_B=60^0a n d/_C=75^0 , then b= (a) sqrt(3) (b) sqrt(6) (c) sqrt(9) (d) 1+sqrt(2)

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

If the equations x+a y-z=0,2x-y+a z=0,a x+y+2z=0 have non-trivial solution, then a= (a) 2 (b) -2 (c) 1+sqrt(3) (d) 1-sqrt(3)

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)