Home
Class 12
MATHS
If |z1+z2|=|z1-z2| and |z1|=|z2|, then ...

If `|z_1+z_2|=|z_1-z_2|` and `|z_1|=|z_2|, ` then (A) `z_1=+-iz_2` (B) `z_1=z_2` (C) `z_=-z_2` (D) `z_2=+-iz_1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If kgt1,|z_1|,k and |(k-z_1barz_2)/(z_1-kz_2)|=1 , then (A) z_2=0 (B) |z_2|=1 (C) |z_2|=4 (D) |z_2|ltk

If z_1 and z_2 are two complex numbers such that |(barz_1-2barz_2)(2-z_1barz_2)|=1 then (A) |z_1|=1, if |z_2|!=1 (B) |z_1|=2, if |z_2|!=1 (C) |z_2|=2, if |z_1|!=1 (D) |z_2|=1, if |z_1|!=2

If |z_1 + z_2| = |z_1| + |z_2| is possible if :

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

Which of the following is correct for any tow complex numbers z_1a n dz_2? |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|

Which of the following is correct for any tow complex numbers z_1a n dz_2? (a) |z_1z_2|=|z_1||z_2| (b) a r g(z_1z_2)=a r g(z_1)a r g(z_2) (c) |z_1+z_2|=|z_1|+|z_2| (d) |z_1+z_2|geq|z_1|+|z_2|