Home
Class 12
MATHS
If alpha,\ beta,\ gamma are the zeros of...

If `alpha,\ beta,\ gamma` are the zeros of the polynomial `f(x)=a x^3+b x^2+c x+d` , then `1/alpha+1/beta+1/gamma=` (a) `b/d` (b) `c/d` (c) `-c/d` (d) ` c/a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the zeros of the polynomial f(x)=x^3-p x^2+q x-r , then 1/(alphabeta)+1/(betagamma)+1/(gammaalpha)= (a) r/p (b) p/r (c) -p/r (d) -r/p

If alpha,\ beta are the zeros of the polynomial f(x)=x^2+x+1 , then 1/alpha+1/beta= (a) 1 (b) -1 (c) 0 (d) None of these

If alpha,\ beta are the zeros of the polynomial p(x)=4x^2+3x+7 , then 1/alpha+1/beta is equal to (a) 7/3 (b) -7/3 (c) 3/7 (d) -3/7

If alpha,beta are the zeros of the polynomial f(x)=a x^2+b x+c , then 1/(alpha^2)+1/(beta^2)= (b^2-2a c)/(a^2) (b) (b^2-2a c)/(c^2) (c) (b^2+2a c)/(a^2) (d) (b^2+2a c)/(c^2)

If alpha,beta are the zeros of the polynomial f(x)=a x^2+b x+c , then m m m 1/(alpha^2)+1/(beta^2)= (a) (b^2-2a c)/(a^2) (b) (b^2-2a c)/(c^2) (c) (b^2+2a c)/(a^2) (d) (b^2+2a c)/(c^2)

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha,beta gamma are the zeroes of polynomial f(x) =(x-1)(x^(2)+x+3) , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^2-p(x+1)-c , show that (alpha+1)(beta+1)=1-c .

If alpha,\ beta are the zeros of polynomial f(x)=x^2-p(x+1)-c , then (alpha+1)(beta+1)= (a) c-1 (b) 1-c (c) c (d) 1+c