Home
Class 12
MATHS
let A & B be two set of complex number d...

let A & B be two set of complex number defined by `A= { z: |z|=12} and B={z:|z-3-4i|=5}`. Let `z_1 epsilon A and z_2 epsilon B` then the value of `|z_1-z_2|` necessarily lies between (A) 3 and 15 (B) 0 and 22 (C) 2 and 22 (D) 4 and 14

Promotional Banner

Similar Questions

Explore conceptually related problems

let A & B be two set of complex number defined by A= { z: |z|=12} and B={z:|z-3-4i|=5} . Which of the given statement(s) is (are) true? (A) AsubeB (B) A=B=phi (C) AcapB!=phi (D) BsubeA

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let z_1, z_2 be two complex numbers represented by points on the circle |z_1|= and and |z_2|=2 are then

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

If z_1 and z_2 lies on |z|=9 and |z-3-4i|=4 respectively, find minimum possible value of |z_1 -z_2| (A) 0 (B) 5 (C) 13 (D) 2

Let Z_(1) and Z_(2) be two complex numbers satisfying |Z_(1)|=9 and |Z_(2)-3-4i|=4 . Then the minimum value of |Z_(1)-Z_(2)| is

The complex number z satisfying |z+bar z|+|z-bar z|=2 and |iz-1|+|z-i|= 2 is/are A) i B) -i C) 1/i D) 1/(i^3)

If B: {z: |z-3-4i|}=5 and C={z:Re[(3+4i)z]=0} then the number of elements in the set B intesection C is (A) 0 (B) 1 (C) 2 (D) none of these

Let z_1, z_2,z_3 be three distinct complex numbers satisfying |z_1- 1|=|z_2 - 1|= |z_3-1| .If z_1+z_2+z_3=3 then z_1,z_2,z_3 must represent the vertices of

Let z in C and if A={z:"arg"(z)=pi/4} and B={z:"arg"(z-3-3i)=(2pi)/3} . Then n(A frown B)=