Home
Class 12
MATHS
If a r g(z)<0, then a r g(-z)-"a r g"(z)...

If `a r g(z)<0,` then `a r g(-z)-"a r g"(z)` equals `pi` (b) `-pi` (d) `-pi/2` (d) `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of a r g(z)+a r g( z ) .

Write the value of a r g(z)+a r g(barz ) .

Write the value of a r g(z)+a r g( barz ) .

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, then find the value of "a r g"(z_1//z_4)+a r g(z_2//z_3)dot

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z lies on the curve a r g(z+1)=pi/4 , then the minimum value of |z-omega|+|z+omega|,w h e romega=e^(i(2pi)/3) , is

Given that the two curves a r g(z)=pi/6 and |z-2sqrt(3)i|=r intersect in two distinct points, then a. [r]!=2 b. 0 < r < 3 c. r=6 d. 3 < r < 2sqrt(3) (Note : [r] represents integral part of r)

Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d arg(2z+1-2i)=pi//4.

Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d arg(2z+1-2i)=pi//4.