Home
Class 12
MATHS
Let omega=-1/2+i(sqrt(3))/2dot Then the ...

Let `omega=-1/2+i(sqrt(3))/2dot` Then the value of the determinant `|1 1 1 1-1-omega^2omega^2 1omega^2omega^4|` is `3omega` b. `3omega(omega-1)` c. `3omega^2` d. `3omega(1-omega)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))