Home
Class 12
MATHS
The shaded region, where P=(-1,0),Q=(-1+...

The shaded region, where `P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),-sqrt(2)),S=(1,0)` is represented by Figure

`|z+1|gt2,|a r g(z+1)ltpi/4`
`|z+1|lt2,|a r g(z+1)ltpi/2`
`|z+1|gt2,|a r g(z+1)gtpi/4`
`|z+1|lt2,|a r g(z+1)gtpi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The shaded region ,where P=(-1 ,0)Q=(-1 + sqrt(2),sqrt(2)) R=(-1+sqrt(2),-sqrt(2)),S=1(1,0) is represent by

The locus of z which lies in shaded region (excluding the boundaries) is best represented by Fig z :|z+1|>2a n d|"a r g"(z+1)| 2a n d|"a r g"(z-1)| 2a n d|"a r g"(z+1)| 2a n d|"a r g"(z-1)|

Plot the region represented by pi/3lt=a r g((z+1)/(z-1))lt=(2pi)/3 in the Argand plane.

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

Prove that |(z_1- z_2)/(1-barz_1z_2)|lt1 if |z_1|lt1,|z_2|lt1

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|z+1|^2) |1/(z+1)|,1/(|z+1|^2) (d) (sqrt(2))/(|z|1""|^2)

For any two complex numbers, z_(1),z_(2) |1/2(z_(1)+z_(2))+sqrt(z_(1)z_(2))|+|1/2(z_(1)+z_(2))-sqrt(z_(1)z_(2))| is equal to

If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5 , then (a) im(z)=0 (b) Re(z)gt0 , Im(z)gt0 (c) Re(z)gt0 , Im(z)lt0 (d) Re(z)=3

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣