Home
Class 12
MATHS
Prove that if x is real, the expression ...

Prove that if x is real, the expression `((x-a)(x-c))/(x-b)` is capable of assuming all values if `agtbgtc` or `altbltc`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x is real, the expression (x+2)/(2x^2 + 3x+6) takes all value in the interval

For real x, the function ((x-a)(x-b))/(x-c) will assume all real values provided a) agtbgtc b) altbltc c) agtc ltb d) a le c le b

If x in R , then the expression 9^(x) - 3^(x) + 1 assumes

If x is real and the expression (x^(2) + 2x - 11)/( x - 3) takes all values which do not lie between a and b, then find a and b

Find the values of a for which the expression (ax^2+3x-4)/(3x-4x^2+a) assumes all real values for all real values of x

If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3) lies between

If the expression x^(2)-(m+2)x+4 is always positive for all real values of x, then find range of m

If x is real, then the minimum value of the expression x^2-8x+17 is

If x is real, then the minimum value of the expression x^2-8x+17 is

If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if