Home
Class 12
MATHS
Prove that |(12x)/(4x^2+9)|le1 for all r...

Prove that `|(12x)/(4x^2+9)|le1` for all real values of x the equality being satisfied only if `|x|=3/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(x)/(x^(2)-5x+9)le1.

If |(12x)/(4x^(2)+9)| le 1 , then

Prove that for all real values of x and y ,x^2+2x y+3y^2-6x-2ygeq-11.

if allvalues of x which satisfies the inequality log _((1//3))(x ^(2) +2px+p^(2) +1) ge 0 also satisfy the inequality kx ^(2)+kx- k ^(2) le 0 for all real values of k, then all possible values of p lies in the interval :

The set of real values of x satisfying ||x-1|-1|le 1 , is

For real values of x, the value of expression (11x^2-12x-6)/(x^2+4x+2)

sqrt(4x)=x-3 What are all values of x that satisfy the given equation? I.1 II. 9

The set of all values of x satisfying the inequations |x-1| le 5 " and " |x|ge 2, is

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

Find the values of a for which the expression (ax^2+3x-4)/(3x-4x^2+a) assumes all real values for all real values of x