Home
Class 12
MATHS
Solve 1/([x]\)+1/([2x])={x}+1/3, where [...

Solve `1/([x]\)+1/([2x])={x}+1/3`, where [ ] denotes the greatest integer function and { } denotes fractional part of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

The function f( x ) = [x] + sqrt{{ x}} , where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively, is discontinuous at

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then