Home
Class 12
MATHS
If 0ltalphalt pi/4 equation (x-sinalpha)...

If `0ltalphalt pi/4` equation `(x-sinalpha)(x-cosalpha)-2=0` has (A) both roots in `(sinalpha, cosalpha)` (B) both roots in `(cosalpha, sinalpha)` (C) one root in `(-oo, cosalpha)` and other in `(sinalpha, oo)` (D) one root in `(-oo,sinalpha)` and other in `(cosalpha, oo)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If b > a , then the equation (x-a)(x-b)-1=0 has (a) both roots in (a ,b) (b) both roots in (-oo,a) (c) both roots in (b ,+oo) (d)one root in (-oo,a) and the other in (b ,+oo)

If b gt a , then the equation (x-a)(x-b)-1=0 has (a) Both roots in (a, b) " " (b) Both roots in (-oo, a) (c) Both roots in (b, +oo) " " (d) One root in (-oo, a) and the other in (b, +oo)

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) then show that sinalpha+cosalpha=sqrt(2)costheta .

If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha) then show that sinalpha+cosalpha=sqrt(2)costheta .

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

Prove that (sinalpha)/(1+cosalpha)+(1+cosalpha)/(sin alpha)=2"cosec "alpha .

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

Find the inverse of [(1, 0, 0),( 0,cosalpha,sinalpha),(0,sinalpha,-cosalpha)]