Home
Class 12
MATHS
If alpha and beta are roots of equation ...

If `alpha and beta` are roots of equation `x^2 +px +q = 0` and `f(n) = alpha^n+beta^n`, then (i) `f(n+1)+pf(n) -qf(n-1)=0` (ii) `f(n+1)-pf(n) +qf(n-1)=0` (iii ) `f(n+1)+pf(n) +qf(n-1)=0` (iv) `f(n+1)-pf(n) -qf(n-1)=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

if alpha , beta be roots of equation 375 x^2 -25 x -2 = 0 and s_n = alpha^n + beta^n then lim_(n->oo) (sum_(r=1)^n S_r) = .......

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha, beta be the real roots of ax^2+bx+c=0 , and s_n=alpha^n + beta^n then prove that as_n + bs_(n-1)+cs_(n-2)=0 .for all n in N .

f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

If alpha,beta are the roots of equation x^(2)-10x+2=0 and a_(n)=alpha^(n)-beta^(n) then sum_(n=1)^(50)n.((a_(n+1)+2a_(n-1))/(a_(n))) is more than (a)12500 (b)12250 (c)12750 (d)12000