Home
Class 12
MATHS
If alpha and beta are solution of sin^(2...

If `alpha` and `beta` are solution of `sin^(2)x+a sin x +b = 0` as well as that of `cos^(2)x +c ocs x +d = 0`, such that `sin alpha != sin beta` and `cos alpha != cos beta` then `sin (alpha+beta)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If alpha and beta are solutions of sin^2 x + a sin x+b=0 as well as that of cos^2x + c cosx + d =0 then sin(alpha + beta) is equal to

If cos(alpha+beta)=0 then sin(alpha+2beta)=

If cos(alpha + beta)=0 , then sin (alpha-beta) can be reduced to

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)