Home
Class 12
MATHS
If two roots of the equation (p-1)(x^(...

If two roots of the equation
`(p-1)(x^(2)+x+1)^(2)-(p+1)(x^(4)+x^(2)+1)=0` are real and distinct and `f(x)=(1-x)/(1+x)`, then `f(f(x))+f(f(1/x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to