Home
Class 12
MATHS
Let alpha+iotabeta ,alpha,betaepsilonR b...

Let `alpha+iotabeta` ,`alpha,betaepsilonR` be a root of `x^3+qx+r=0`If `gamma` be a real root of equation `x^3+qx+r=0` then `gamma`
(A) `-2alpha`
(B) `alpha`
(C) `2alpha`
(D) `-alpha`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of roots of equations f(x) - g(x)=0 is (a)0 (b) 2alpha (c) -2alpha (d) 4alpha

If sin alpha and cos alpha are roots of the equation px^2 + qx+r=0 then :

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum (1)/( alpha )

If alpha , beta , gamma are the roots of x^3 +qx +r=0 then sum ( beta + gamma )^(-1) =

If alpha. beta are the roots of x^2 +bx+c=0 and alpha + h, beta + h are the roots of x^2 + qx +r=0 then 2h=

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha and beta are the roots of the equation px^(2) + qx + 1 = , find alpha^(2) beta + beta^(2)alpha .