Home
Class 12
MATHS
Find the product of the following two ma...

Find the product of the following two matrices `[(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)]`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove the following by multiplication of determinants and power cofactor formula |{:(0,c,b),(c,0,a),(b,a,0):}|^(2)=|{:(b^(2)+v^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}| =|{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}|=4a^(2)b^(2)c^(2)

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .