Home
Class 12
MATHS
A square matix A is called idempotent if...

A square matix A is called idempotent if (A) `A^2=0` (B) `A^2=I` (C) `A^2=A` (D) `2A=I`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

A square matix A is a called singular if det A is (A) negative (B) zero (C) positive (D) non-zero

If B is an idempotent matrix, and A=I-B , then

If B is an idempotent matrix, and A=I-B , then a. A^2=A b. A^2=I c. A B=O d. B A=O

If A is square matrix such that A^2=A , then (I+A)^3-7A is equal to (A) A (B) I-A (C) I (D) 3A

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-A^2+I=0

The length of the diagonal of a square is d units. The area of the square is (a) d^2 (b) 1/2d^2 (c) 1/4d^2 (d) 2d^2

Let A be a 3xx3 matrix satisfying A^3=0 , then which of the following statement(s) are true (a) |A^2+A+I|!=0 (b) |A^2-A+O|=0 (c) |A^2+A+I|=0 (d) |A^2-A+I|!=0

If A^3 =O, then I+ A + A^2 = (where I is the unit matrix of order same as that of square matrix A) is equals (A) I -A (B) (I-A)^-1 (C) (I+A) (D) none of these

Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0 ,then f(A) is (a) I+A+A^2 (b) I+2A+2A^2 (c) I-A-A^2 (d) none of these

If for a square matrix A,A^2=A then |A| is equal to (A) -3 or 3 (B) -2 or 2 (C) 0 or 1 (D) none of these