Home
Class 12
MATHS
If A=[(1,1,2),(5,2,6),(-2,-1,-3)] then A...

If `A=[(1,1,2),(5,2,6),(-2,-1,-3)]` then A is (A) nilpotent (B) idempotent (C) symmetric (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

show that [(1,1,3),(5,2,6),(-2,-1,-3)]=A is nilpotent matrix of order 3.

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A= [(1,0,1), (0,0,1),(a,b,2)] , then a I+b A+2A^2 equals (a) A (b) - A (c) a b\ A (d) none of these

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

The matrix A=1/3{:[(1,2,2),(2,1,-2),(-2,2,-1)]:} is 1) orthogonal 2) involutory 3) idempotent 4) nilpotent

Let A={1,\ 2,\ 3} and consider the relation R={(1,\ 1),\ (2,\ 2),\ (3,\ 3),\ (1,\ 2),\ (2,\ 3),\ (1,\ 3)} . Then, R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric nor transitive

If A={1, 2, 3} , then a relation R={(2,3)} on A is (a) symmetric and transitive only (b) symmetric only (c) transitive only (d) none of these