Home
Class 12
MATHS
If A a non singular matrix anA^T denotes...

If A a non singular matrix an`A^T` denotes the transpose of A then (A) `|A A^T|!=|A^2|` (B) `|A^T A|!=|A^T|^2` (C) `|A|+|A^T|!=0` (D) `|A|!=|A^T|`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If a non-singular matrix and A^(T) denotes the tranpose of A, then

If A is a square matrix, then write the matrix a d j(A^T)-(a d j\ A)^T .

Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric if A^2=(A^T)^2

Let A be a non-singular matrix. Show that A^T A^(-1) is symmetric iff A^2=(A^T)^2 .

If A=[[4,1],[5,8]] , show that A+A^T is symmetric matrix, where A^T denotes the transpose of matrix A

If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A^T," then " B B^T equals

If A is a nonsingular matrix such that A A^(T)=A^(T)A and B=A^(-1) A^(T) , then matrix B is

If A is an invertible matrix, then which of the following is not true (A^2)^-1=(A^(-1))^2 (b) |A^(-1)|=|A|^(-1) (c) (A^T)^(-1)=(A^(-1))^T (d) |A|!=0

If A is a non-singular square matrix such that A^(-1)=[(5, 3),(-2,-1)] , then find (A^T)^(-1) .

If A=[[3,4],[5,1]] , show that A-A^T is a skew symmetric matrix, where A^T denotes the transpose of matrix A