Home
Class 12
MATHS
If A=[a(ij)](mxxn) and B=[b(ij)](nxxp) t...

If `A=[a_(ij)]_(mxxn) and B=[b_(ij)]_(nxxp)` then `(AB)^\'` is equal to (A) `BA^\'` (B) `B\'A` (C) `A\'B\'` (D) `B\'A\'`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

A matrix A=[a_(ij)]_(mxxn) is

A=[a_(ij)]_(mxxn) is a square matrix, if

If A and B are two matrices such that AB=A, BA=B, then A^25 is equal to (A) A^-1 (B) A (C) B^-1 (D) B

(Statement1 Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 If matrix A= [a_(ij)] _(3xx3) , B= [b_(ij)] _(3xx3), where a_(ij) + a_(ji) = 0 and b_(ij) - b_(ji) = 0 then A^(4) B^(5) is non-singular matrix. Statement-2 If A is non-singular matrix, then abs(A) ne 0 .

If A and B are two square matrices of same order satisfying AB=A and BA=B, then B^2 is equal to (A) A (B) B (C) A^2 (D) none of these

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

int_a^b |x|/xdx, altb , is equal to (A) b-a (B) b+a (C) |b|-|a| (D) |b|+|a|

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Let M = [a_(ij)]_(3xx3) where a_(ij) in {-1,1} . Find the maximum possible value of det(M). (A) 3 (B) 4 (C) 5 (D) 6

If A=[(1,0),(2,0)] and B=[(0,0),(1,12)] then= (A) AB=0, BA=0 (B) AB=0,BA!=0 (C) AB!=0,BA=0 (D) AB!=0,BA!=0