Home
Class 12
MATHS
If A is an invertible matrix, then wh...

If `A` is an invertible matrix, then which of the following is not true `(A^2)-1=(A^(-1))^2` (b) `|A^(-1)|=|A|^(-1)` (c) `(A^T)^(-1)=(A^(-1))^T` (d) `|A|!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix then which of the following are true? (A) A!=0 (B) |A|!=0 (C) adjA!=0 (D) A^-1=|A|adjA

If A and B are invertible matrices, which of the following statement is not correct. a d j\ A=|A|A^(-1) (b) det(A^(-1))=(detA)^(-1) (c) (A+B)^(-1)=A^(-1)+B^(-1) (d) (A B)^(-1)=B^(-1)A^(-1)

Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to (A) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertible matrix, then (a d jdotA)^(-1) is equal to a. a d jdot(A^(-1)) b. A/(d e tdotA) c. A d. (detA)A

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to(a) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertible matrix of order 3 and B is another matrix of the same order as of A, such that |B|=2, A^(T)|A|B=A|B|B^(T). If |AB^(-1)adj(A^(T)B)^(-1)|=K , then the value of 4K is equal to

For the matrix A=[{:(1,1,0),(1,2,1),(2,1,0):}] , which of the following is correct ?