Home
Class 12
MATHS
Let A=[a(ij)](n xxn) be a square matrix ...

Let `A=[a_(ij)]_(n xxn)` be a square matrix and let `c_(ij)` be cofactor of `a_(ij)` in A. If C=`[C_(ij)]` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(nxxn) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)] , then

A=[a_(ij)]_(mxxn) is a square matrix, if

Let A=[a_(ij)]_(mxxn) be a matrix such that a_(ij)=1 for all I,j. Then ,

A matrix A=[a_(ij)]_(mxxn) is

If A=[a_(ij)] is a square matrix of order 3 and A_(ij) denote cofactor of the element a_(ij) in |A| then the value of |A| is given by

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

If A=[a_(ij)] is a scalar matrix, then trace of A is

If A= (a_(ij)) is a 4xx4 matrix and C_(ij) , is the co-factor of the element a_(ij) , in Det (A) , then the expression a_11C_11+a_12C_12+a_13C_13+a_14C_14 equals-

Let A=[a_(ij)]_(3xx3) be a scalar matrix and a_(11)+a_(22)+a_(33)=15 then write matrix A.

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)