Home
Class 12
MATHS
Let F(alpha)=[cosalpha-sinalpha0sinalpha...

Let `F(alpha)=[cosalpha-sinalpha0sinalphacosalpha0 0 0 1]` and `G(beta)=[cosbeta0sinbeta0 1 0-sinbeta0cosbeta]` . Show that `[F(alpha)]^(-1)=F(-alpha)` (ii) `[G(beta)]^(-1)=G(-beta)` (iii) `[F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n prove that [F(alpha)]^(-1)=F(-alpha)dot

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If A(alpha,beta)=[[cosalpha,sinalpha,0],[-sinalpha,cosalpha,0],[ 0, 0,e^(beta)]],t h e nA(alpha,beta)^(-1) is equal to a. A(-alpha,-beta) b. A(-alpha,beta) c. A(alpha,-beta) d. A(alpha,beta)

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

Show that cos^(-1) ((cos alpha+cos beta)/(1+cosalpha cosbeta))=2 tan^(-1)(tan (alpha/2) tan (beta/2))

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .