Home
Class 12
MATHS
If for matrix A,A^(2)+l=0, where l is th...

If for matrix `A,A^(2)+l=0`, where l is the identity matrix, then A equals

Promotional Banner

Similar Questions

Explore conceptually related problems

if for a matrix A, A^2+I=O , where I is the identity matrix, then A equals

If A is skew symmetric matrix, then I - A is (where I is identity matrix of the order equal to that of A)

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I

If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , where I is 3xx3 identity matrix, then the ordered pair (a, b) is equal to : (1) (2,-1) (2) (-2,""1) (3) (2, 1) (4) (-2,-1)

If B, C are square matrices of same order such that C^(2)=BC-CB and B^(2)=-I , where I is an identity matrix, then the inverse of matrix (C-B) is

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)

Find all solutions of the matrix equation X^2=1, where 1 is the 2*2 unit matrix, and X is a real matrix,i.e. a matrix all of whose elements are real.

Show that thematrix A= [{:(,2,3),(,1,2):}] satisfies the equations A^(2)-4A+I=0 where I is 2 xx 2 identity matrix and O is 2 xx 2 zero matrix. Using the equations. Find A^(-1) .