Home
Class 12
MATHS
The system of linear equations x+y+z=2,2...

The system of linear equations `x+y+z=2,2x+y-z=3, 3x+2y+kz=4` has a unique solution if (A) `k!=0` (B) `-1ltklt1` (C) `-2ltklt2` (D) `k=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solution of the system of equations: x+y+z=2 2x+y-z=3, is 3x+2y+k z=4 has a unique solution if k!=0 (b) -1 < k < 1 (c) -2 < k < 2 (d) k = 0

The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z = 2 (k +2) z = 3 have a unique solution if k equals

The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2x + 3y + (a^(2) - 1)z = a + 1

The value of k for which the system of equations k x-y=2 and 6x-2y=3 has a unique solution, is (a) k=3 (b) k !=3 (c) k !=0 (d) k =0

If the system of linear equation x+y+z=6,x+2y+3c=14 ,a n d2x+5y+lambdaz=mu(lambda,mu R) has a unique solution, then

If the system of linear equations x+ky+3z=0 3x+ky-2z=0 2x+4y-3z=0 has a non-zero solution (x,y,z) then (xz)/(y^2) is equal to

If the system of linear equations x-2y + kz = 1, 2x + y+ z = 2, 3x-y-kz = 3 has a solution (x, y, z), z ne 0 , then (x, y) lies on the straight line whose equation is

An ordered pair (alpha, beta) for which the system of linear equations (1+alpha)x+betay+z=2 , alphax+(1+beta)y+z=3 and alphax+betay+2z=2 has unique solution is: (a) (2,4) (b) (-3,1) (c) (-4,2) (d) (1,-3)

An ordered pair (alpha, beta) for which the system of linear equations (1+alpha)x+betay+z=2 , alphax+(1+beta)y+z=3 and alphax+betay+2z=2 has unique solution is: (a) (2,4) (b) (-3,1) (c) (-4,2) (d) (1,-3)

The system of equation x+y+z=2,3x-y+2z=6a n d3x+y+z=-18 has (a) unique solution (b) no solution (c)an infinite number of solutions (d) zero solution as the only solution