Home
Class 12
MATHS
If A is a non singular matrix of order 3...

If A is a non singular matrix of order 3 then `|adj(adjA)|` equals (A) `|A|^4` (B) `|A|^6` (C) `|A|^3` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a non singular square matrix 3 then |adj(A^3)| equals (A) |A|^8 (B) |A|^6 (C) |A|^9 (D) |A|^12

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

Let A be a non-singular square matrix of order 3 xx 3. Then |adj A| is equal to (A) |A| (B) |A|^2 (C) |A|^3 (D) 3|A|

Let A a non singular square matrix of order 3xx3 . Then |adjA| is equal to

Let A be a non-singular square matrix of order n. Then; |adjA| =

If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

If A is a square matrix of order 3 such that |A|=5 , then |Adj(4A)|=