Home
Class 12
MATHS
Using properties of determinant, if |(-a...

Using properties of determinant, if `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = mua^2b^2c^2`, find `mu `

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=a^(2)+b^(2)+c^(2)+1

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

If ∣ -a a^2 ab ac ab -b^2 bc ac bc -c^2 | = ka^2b^2c^2 , then k is equal to