Home
Class 12
MATHS
If A is a non singular square matrix 3 t...

If A is a non singular square matrix 3 then `|adj(A^3)|` equals (A) `|A|^8` (B) `|A|^6` (C) `|A|^9` (D) `|A|^12`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

If A is a non singular square matrix; then adj(adjA) = |A|^(n-2) A

If A is a non singular matrix of order 3 then |adj(adjA)| equals (A) |A|^4 (B) |A|^6 (C) |A|^3 (D) none of these

Let A be a non-singular square matrix of order 3 xx 3. Then |adj A| is equal to (A) |A| (B) |A|^2 (C) |A|^3 (D) 3|A|

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

Let A a non singular square matrix of order 3xx3 . Then |adjA| is equal to

Let A be a non-singular square matrix of order n. Then; |adjA| =

If A is a non-singular square matrix such that |A|=10 , find |A^(-1)|