Home
Class 12
MATHS
If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , ...

If `A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}]` , then the trace of the matrix `Adj(AdjA)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

If A[{:(2,4,4),(2,5,4),(2,5,3):}] , then verify that A adjA = |A|l. Also find A^(-1) .

If A=|{:(1,4,5),(3,2,6),(0,1,0):}| , then evaluate A. (adj. A).

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A=[{:(,1,3,3),(,1,4,3),(,1,3,4):}] then verify that A adj A=|A| I. Also find A^(-1)

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.