Home
Class 12
MATHS
For the matrix A=[(1,1,0),(1,2,1),(2,1,0...

For the matrix `A=[(1,1,0),(1,2,1),(2,1,0)]` which of the following is correct?
(A) `A^3+3A^2-I=0` (B) `A^3-3A^2-I=0` (C) `A^3+2A^2-I=0` (D) `A^3-A^2+I=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a 3xx3 matrix satisfying A^3=0 , then which of the following statement(s) are true (a) |A^2+A+I|!=0 (b) |A^2-A+O|=0 (c) |A^2+A+I|=0 (d) |A^2-A+I|!=0

Find the rank of matrix.A= [[3,1,2,0],[1,0,-1,0],[2,1,3,0]]

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

Let M be a 3xx3 matrix satisfying M^(3)=0 . Then which of the following statement(s) are true: (a) |M^(2)+M+I|ne0 (b) |M^(2)-M+I|=0 (c) |M^(2)+M+I|=0 (d) |M^(2)-M+I|ne0

if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I .

In the matrix [[1,0,5],[2,-3,4]] i. number of rows is……………………...

If a matrix A=((3,2,0),(1,4,0),(0,0,5)) show that A^2-7A+10I_(3) = 0 and hence find A^(-1)

Given A=[{:(,1,1),(,-2,0):}] and B=[{:(,2,-1),(,1,1):}] Solve for matrix X: (i) X+2A=B (ii) 3A+B+2X=0

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these