Home
Class 12
MATHS
If A=[(1,3),(3,4)] and A^2-xA-I=0 then ...

If `A=[(1,3),(3,4)] and A^2-xA-I=0` then find x.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(1,2),(2,3):}] and A^(2)-xA=I_(2) then the value of x is

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B

if A=[{:(4,2),(-3,2),(1,3):}]and B=[{:(-1,3),(0,2),(2,-4):}], then find 3A-4B.

If A A=[3-2 4-2] and I=[1 0 0 1] , find k so that A^2=k A-2I .

Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)] . The two matrices X and Y are such that XA=B and AY=B , then find the matrix 3(X+Y)

If a matrix A=((3,2,0),(1,4,0),(0,0,5)) show that A^2-7A+10I_(3) = 0 and hence find A^(-1)